

Государственное бюджетное образовательное учреждение Высшего профессионального образования Новосибирский государственный медицинский университет Министерства здравоохранения РФ

Фармацевтический факультет Кафедра фармакогнозии и ботаники

Д.Л. Макарова, В.В. Величко, Д.С. Круглов, М.А. Ханина Эфирные масла: основы теории

Электронное учебное пособие

Новосибирск - 2013

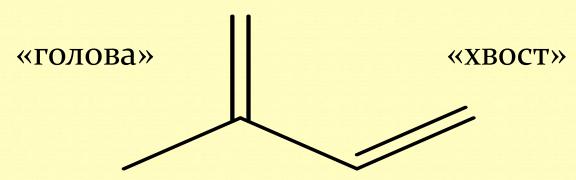
Содержание

- 1. Понятие о терпенах
- 2. Классификация терпенов
- 3. Понятие об эфирных маслах
- 4. Классификация эфирных масел
- 5. <u>Дитерпены</u>
- 6. Политерпены
- 7. Значение эфирных масел для растений
- 8. Локализация эфирных масел в растении
- 9. Эндогенные структуры
- 10. Экзогенные структуры
- 11. Биосинтез терпенов
- 12. Глоссарий
- 13. Проверочный тест
- 14. Рекомендуемая литература
- *15.* <u>Авторы</u>
- 16. Контактная информация

Понятие о терпенах

Прежде чем остановиться на эфирных маслах необходимо рассмотреть главную их составную часть – терпены.

 $\underline{\mathit{Терпены}}$ — это природные органические углеводороды на основе изопрена с общей формулой (C_5H_8)_n, где n — число звеньев - от 2 до 10 и более.



Понятие о терпенах

<u>Изопрен</u> — 5-углеродное соединение с разветвленной цепью и двумя сопряженными двойными связями.

При этом разветвленный конец изопреновой единицы рассматривается как «голова», а неразветвленный — как «хвост».

Классификация терпенов

№ п/п	Название группы	Формула	Примеры
			соединений
1	Гемитерпены	C_5H_8	Изовалериановая
			кислота
2	Монотерпены	$(C_5H_8)_2 - C_{10}H_{16}$	Ментол, камфора,
			борнеол, пинен и др.
3	Сесквитерпены	$(C_5H_8)_3 - C_{15}H_{24}$	Хамазулен, ледол,
			анетол и др.
4	Дитерпены	$(C_5H_8)_4 - C_{20}H_{32}$	Витамин А, фитол
5	Тритерпены	$(C_5H_8)_6$	Тритерпеновые
			сапонины, сквален
6	Тетратерпены	$(C_5H_8)_8$	Каротиноиды
7	Политерпены	$(C_5H_8)_n$	Каучук, гуттаперча

Классификация терпенов

В каждой группе выделяют ациклические и циклические соединения.

Циклические классифицируют по числу циклов:

- моноциклические
- бициклические
- трициклические и т.д.

Понятие об эфирных маслах

Эфирные масла (Olea aetherea) – летучие, подвижные, бесцветные или окрашенные жидкости, представляющие собой сложные смеси органических веществ, главным образом терпеновой природы, с характерным запахом.

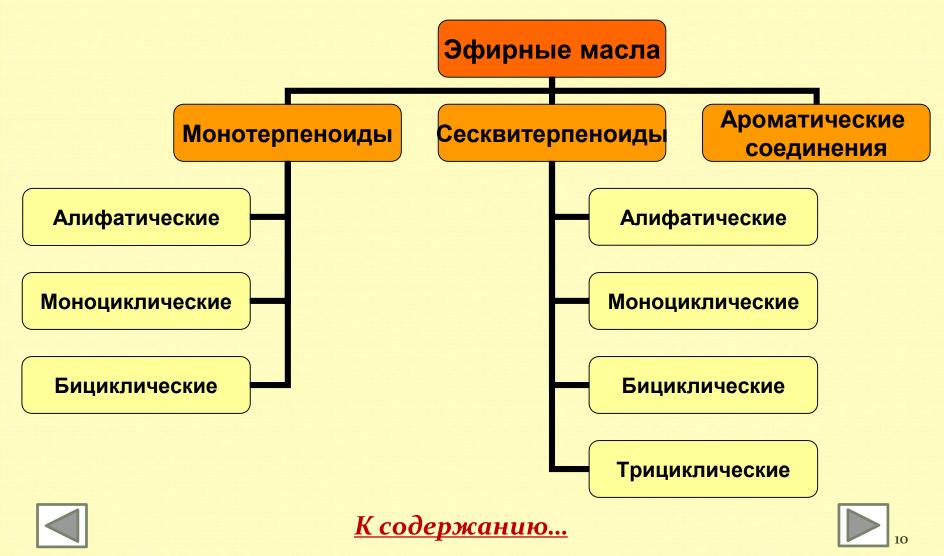
Свое название эфирные масла получили благодаря наличию характерного ароматного запаха и маслообразной консистенции.

В отличие от жирных масел они испаряются, не оставляя жирного пятна.

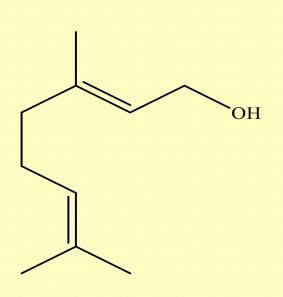
Классификация эфирных масел

По химической природе эфирные масла представляют собой сложные смеси различных органических соединений. Основную группу среди них составляют вещества, имеющие изопреноидную структуру.

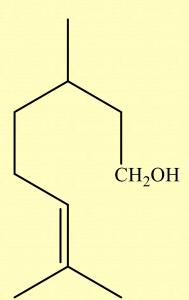
В состав эфирных масел входят не все терпеноиды, а только два класса - монотерпеноиды и сесквитерпеноиды. Также во многих маслах содержатся вещества ароматического и алифатического ряда.


Классификация эфирных масел

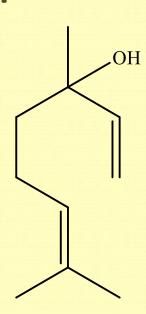
Терпеноиды эфирных масел являются углеводородами или их кислородными производными: спиртами, альдегидами, кетонами, фенолами, кислотами, эфирами, лактонами, окисями. Количество терпеноидов увеличивается благодаря склонности этих соединений к разным формам изомерии: оптической, геометрической (цис-, транс-изомерия).



Классификация эфирных масел



Классификация эфирных масел Ациклические монотерпены

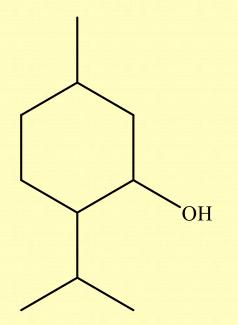

гераниол

Содержится в эфирных маслах герани, розы

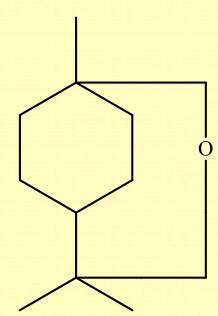
цитронеллол

Основной компонент эфирного масла мелиссы лекарственной

линалоол

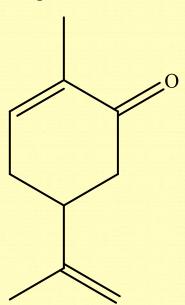

Основной компонент эфирного масла кориандра посевного

<u>К содержанию...</u>



Классификация эфирных масел Моноциклические монотерпены

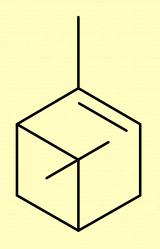
ментол


Основной компонент эфирного масла мяты перечной

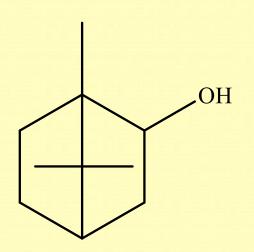
1,8-цинеол

Основной компонент эфирных масел шалфея лекарственного, видов эвкалипта

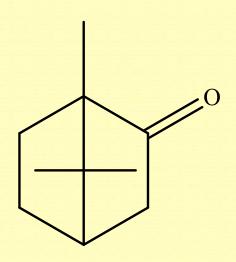
К содержанию...


карвон

Основной компонент эфирных масел тмина обыкновенного, укропа огородного____



Классификация эфирных масел Бициклические монотерпены

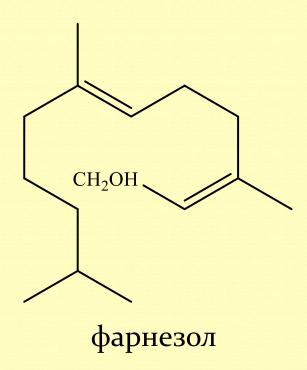


Содержится в смоле хвойных деревьев

борнеол

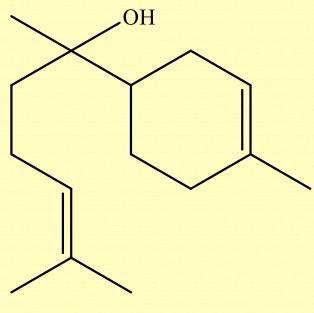
Содержится в эфирном масле валерианы лекарственной

камфора


Содержится в эфирных маслах камфорного лавра, видов пихты

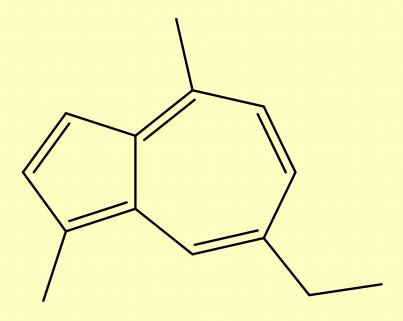
К содержанию...

Классификация эфирных масел Ациклические сесквитерпены



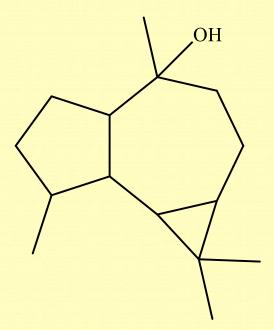
Содержится в эфирном масле цветков липы

Классификация эфирных масел Моноциклические сесквитерпены

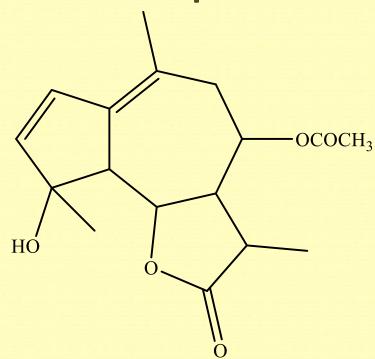

α-бисаболол

Содержится в эфирном масле ромашки аптечной

Классификация эфирных масел Бициклические сесквитерпены


хамазулен

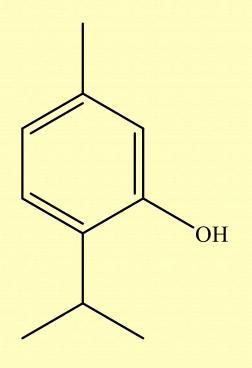
Содержится в эфирных маслах ромашки аптечной, тысячелистника обыкновенного, некоторых видов полыни

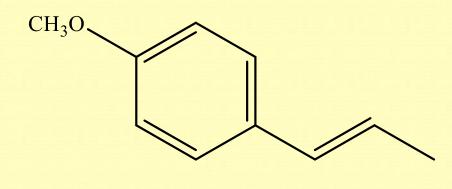


Классификация эфирных масел Трициклические сесквитерпены

ледол

Содержится в эфирном масле багульника болотного


матрицин


Содержится в ромашке аптечной

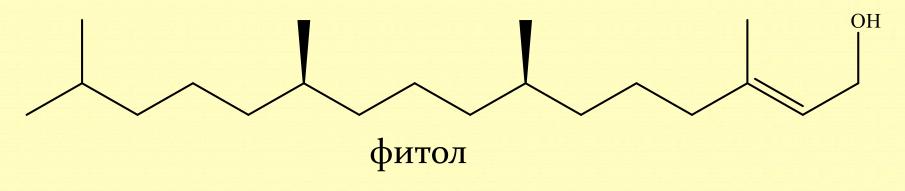
Классификация эфирных масел Ароматические соединения

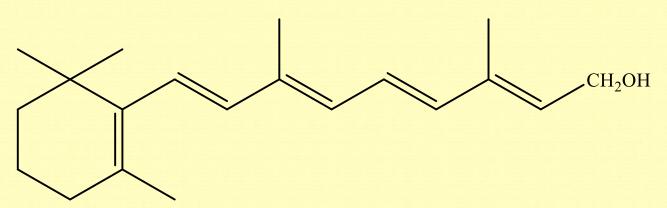
ТИМОЛ

Содержится в эфирных маслах тимьяна ползучего, душицы обыкновенной

анетол

Содержится в эфирном масле аниса обыкновенного


Практически нелетучи.


Представлены сравнительно небольшим числом соединений:

- фитол С₂₀H₃₉OH, входящий в состав хлорофилла, может рассматриваться как гидрированный дитерпеновый спирт;
- моноциклическим дитерпеновым спиртом является витамин А.

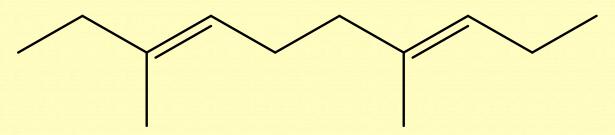
витамин А

Содержатся в бальзамах и смолах растений.

Особенно широко распространены в смолах циклические кислоты (производные дитерпенов), имеющие эмпирическую формулу С₂₀Н₃₀О₂. Они составляют около 4/5 смолистых выделений хвойных растений (живицы). При переработке живицы отгоняют с водяным паром скипидар; остается твердый остаток - канифоль. Главную массу канифоли составляют циклические кислоты, получившие название смоляных кислот.

Абиетиновая кислота

Политерпены


- Главным источником натурального каучука служит культивируемое в тропиках каучуконосное дерево гевея (*Hevea brasiliensis*).
- Гутта весьма близка по составу и строению к каучуку, ее добывают из тропического дерева *Palaquim gutta*. Гутта исходный продукт для получения гуттаперчи, имеющей большое значение как изолирующий материал.

Политерпены

В каучуке и гуттаперче остатки изопрена образуют длинную цепочку и связаны между собой следующим образом:

Различие заключается в том, что полиизопреновая цепочка каучука содержит от 1000 до 6000 остатков изопрена, а цепочка гуттаперчи – около 100. Различия в строении обусловливают и различия их физических свойств.

Значение эфирных масел для растений

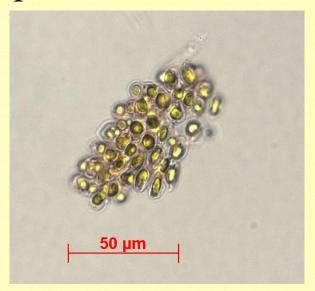
- защита от насекомых и животных,
- закрытие ран в древесине и коре,
- предохранение от излишней влаги,
- предохранение от грибковых заболеваний,
- привлечение насекомых-опылителей,
- регулирование транспирации,
- предохранение растения от перегрева ИЛИ переохлаждения,
- участие в <u>аллелопатии</u>

Локализация эфирных масел в растении

Накапливаются эфирные масла в терпеноидсодержащих структурах, подразделяемых на:

- <u>эндогенные</u> возникающие из внутренних элементов растения,
- <u>экзогенные</u> эпидермальные железистые структуры.

1. Эндогенный идиобласт - самое примитивное специализированное секреторное образование.


В отличие от паренхимной клетки он может функционировать только как секреторная клетка, продуцирующая секрет.

Строение идиобластов у большинства растений сходное. Клетка имеет большое ядро, стенки ее рано опробковевают и содержащийся в ее полости секрет изолируется целлюлозной или субериновой оболочкой.

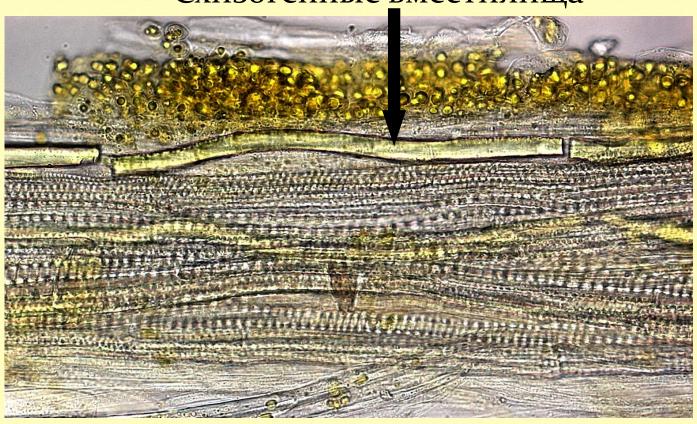
2. Группа идиобластов - представляет собой компактную группу плотно прилегающих одна к другой секреторных клеток с ненарушенными или частично лизированными стенками.

3. Схизогенные вместилища - это тесно примыкающие друг к другу клетки, богатые цитоплазмой и продуцирующие терпеноидный секрет, который затем поступает в полость вместилища.

Различают две формы, близкие между собой: каналы и полости.

• Схизогенные каналы (смоляные ходы) - это разной длины ходы, чаще септированные и идущие вдоль оси органа.

Вначале возникает группа из 3-4 клеток, с мельчайшими каплями секрета в них; между клетками в это время образуется просвет. По мере роста растения каналы приобретают округлую или эллиптическую форму, полость их расширяется, эпителиальные клетки радиально делятся, вытягиваются в длину, несколько сплющиваются и интенсивно выделяют секрет внутрь полости канала.


• Схизогенная полость - представляет собой короткий замкнутый мешок, нередко вздутый изза обилия секрета.

Схизогенные полости могут быть септированными или не септированными.

Схизогенные вместилища

• Схизо-лизигенные вместилища - секреторные структуры, у которых на самых ранних этапах развития растения наряду со схизогенезом происходит лизигенез.

Вначале становятся заметными группы из 3-6 клеток большого размера по сравнению с соседними паренхимными клетками, между которыми виден расширенный, схизогенно образованный межклетник. Через некоторое время начинается лизис внутренних клеток вместилища, которые за короткое время частично или полностью резорбируются. В результате полость вместилища резко увеличивается.

Экзогенные структуры

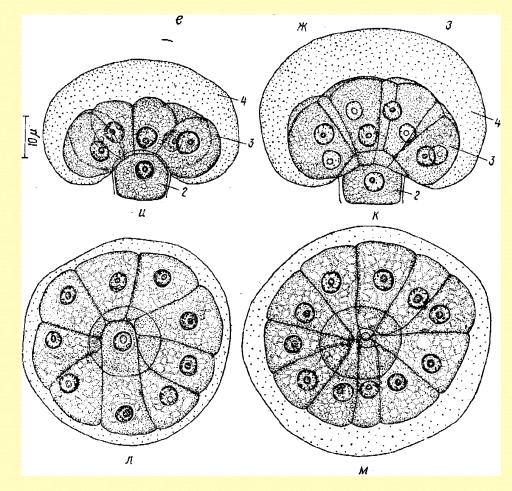
1. Одиночный эпидермальный идиобласт – самая примитивная форма секреторных образований, представляет собой одиночную эпидермальную секреторную клетку.

Экзогенные структуры

2. Железистая поверхность состоит из большой группы эпидермальных секреторных клеток. Они сильно вытянуты по отношению к поверхности органа и отличаются от соседних клеток размерами и тонкими стенками.

Экзогенные структуры

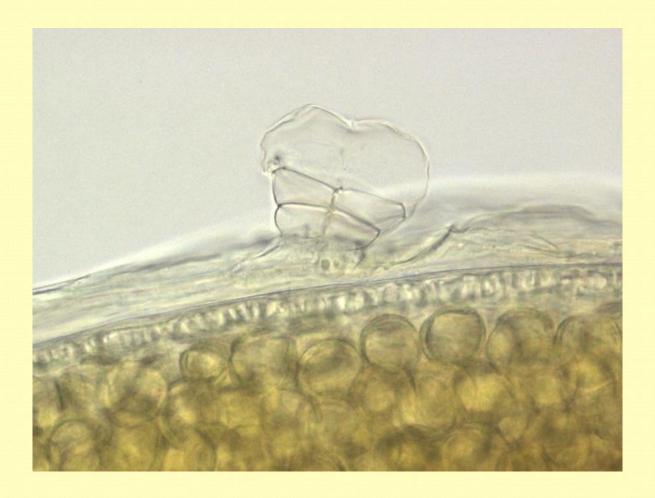
3. Эфиро-масличные железки - железистые многоклеточные трихомы, состоящие из ножки (1-3 нежелезистые клетки) и головки (6-8 секретирующих клеток, расположенных по радиусу (сем. Lamiaceae) или в 2 ряда и в 3-4 яруса (сем. Asteraceae).



Экзогенные структуры растений семейства Lamiaceae

Вид сбоку

Вид сверху



К содержанию...

Экзогенные структуры растений семейства Asteraceae

Экзогенные структуры растений семейства Asteraceae

Локализация эфирных масел в растении

Часто в литературе, когда речь идет об экзогенных и однозначно эндогенных вместилищах, они подразумеваются как вместилища эфирного масла. Однако в большинстве случаев летучие вещества составляют только часть вторичных метаболитов, а другую составляют нелетучие соединения — кумарины, флавоноиды, полифенолы, алкалоиды, жирные масла и др. Не всегда ясно, где именно локализованы данные соединения, допускается, что часть из них может находиться в тех же вместилищах, что и эфирные масла.

Локализация эфирных масел в растении

Так, в смоляных ходах деревьев семейства *Pinaceae* находится не эфирное масло, а живица — смолистое вещество, состоящее из смоляных веществ, монотерпенов, воды.

Таким образом, экзогенные и эндогенные вместилища могут содержать эфирное масло, но далеко не всегда эфирные масла являются единственным их содержимым.

- Синтезировать терпены способны все растения.
- Всегда синтезируется не один, а несколько видов терпеновых соединений одновременно.
- Состав и количество компонентов эфирного масла зависит от генетических особенностей организма.

В 1953 г. Лавослав Ружичка предложил гипотезу о путях синтеза терпенов - **изопреновые правила:**

- Общее: углеродный скелет молекулы терпена строится из двух и более производных изопрена,
- **Частное:** звенья изопрена присоединяются в определенной последовательности по типу «голова к хвосту». У высокомолекулярных терпенов (каротиноиды, стероиды, тритерпеноиды) наблюдается присоединение «хвост к хвосту».
- Биогенетическое: у каждого клеточного терпена есть свой простой ациклический предшественник.

Предшественники:

- монотерпенов гераниол,
- сесквитерпенов фарнезол,
- ди- и тетратерпенов геранилгераниол,
- тритерпенов сквален.

Биосинтез терпенов в растениях начинается с окисления глюкозы, образования пировиноградной кислоты (ПВК), а затем уксусной кислоты. Уксусная кислота под действием коэнзима А в присутствии АТФ превращается в ацетилКоА.

Схема биосинтеза терпенов

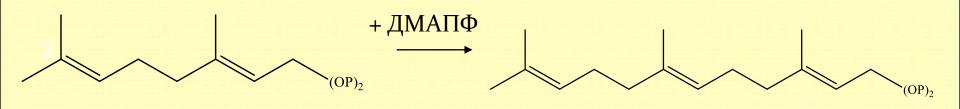
$${
m C_6H_{12}O_6}$$
 — ${
m CH_3COCOOH}$ — ${
m CH_3COSKOA}$ — ${
m CH_3COSKOA}$ — ${
m CO_2}$ Пировиноградная уксусная кислота кислота

Все последующие стадии биосинтеза идут при участии специальных ферментов в присутствии АТФ.

Из 3-х молекул уксусной кислоты, которые вступают в биосинтез в активной форме, образуется ряд промежуточных продуктов: мевалоновая кислота, изопентилпирофосфат (ИППФ).

Затем происходит изомеризация с образованием диметиламилпирофосфата (ДМАПФ - C_5H_8). Два активных соединения C_5H_8 димеризуются по типу «голова к хвосту» с образованием геранилпирофосфата (ГПФ – $C_{10}H_{16}$), из которого после отщепления фосфорного остатка образуется гераниол и другие монотерпены.

Схема биосинтеза терпенов



диметиламилпирофосфат

геранилпирофосфат

Схема биосинтеза терпенов

геранилпирофосфат

фарнезилпирофосфат

Биосинтез дитерпенов может осуществляться как путем димеризации двух молекул геранилпирофосфата ($C_{10}H_{16}+C_{10}H_{16}$) по принципу «голова к голове», так и соединением фарнезилпирофосфата и ДМАПФ ($C_{10}H_{16}+C_{5}H_{8}$), что через ряд промежуточных соединений приводит к образованию ликопина и других каротиноидов.

ликопин

Ключевым биогенетическим веществом для образования более сложных терпеноидов является сквален ($C_{30}H_{48}$), который образуется путем димеризации двух молекул фарнезилпирофосфата по принципу «голова к голове». Сквален – исходное соединение, из которого образуются стероиды (стероидные сапонины, сердечные гликозиды, стероидные алкалоиды).

Особенности заготовки сырья, содержащего эфирное масло

- Заготовку проводят утром, т.к. при повышенной температуре эфирное масло улетучивается.
- Цветки сложноцветных собирают при распускании краевых цветков тогда в процессе сушки все цветки в корзинке раскрываются. Для цветков ромашки этот период определен так "до горизонтального расположения язычковых цветков".

Особенности заготовки сырья, содержащего эфирное масло

- Легко осыпающиеся плоды зонтичных (например, плоды тмина) собирают по росе, т.е. рано утром, чтобы избежать потери сырья.
- Плоды зонтичных собирают, когда побуреют центральные зонтики, т.е. при созревании 50 60% плодов, чтобы не допустить их осыпи.

Особенности сушки сырья, содержащего эфирное масло

Сырье, содержащее **эфирное масло** сушат воздушно-теневым или искусственным способом, при температуре не выше 40°C.

Сушка должна быть затянута во времени, т.к. в это время продолжается биосинтез и накопление эфирного масла.

Сырье раскладывается толстым слоем для предотвращения испарения ЭМ.

Особенности сушки сырья, содержащего эфирное масло

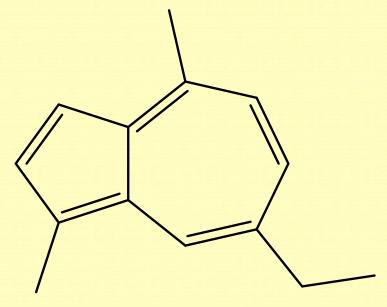
Диапазон температур:

- При локализации эфирного масла в экзогенных эфирно-масличных образованиях температура сушки должна быть не более 30-35°C;
- При локализации эфирного масла в эндогенных терпеноидсодержащих образованиях температура сушки должна быть 35-40°С.

Глоссарий

1. **Аллелопатия** – взаимодействие растений посредством выделения биологически активных веществ во внешнюю среду.

Таким образом, растения внедряются в фитоценозы, подавляя другие виды. Химические вещества, участвующие во взаимодействиях растений, называются аллелопатическими веществами, они являются вторичными низкомолекулярными продуктами. Большинство из них – это летучие терпены или фенольные соединения. Среди терпенов аллелопатическими свойствами обладают пинены, камфора, 1,8-цинеол, туйон, камфен; к растениям, активно продуцирующим аллелопатические вещества, относятся Eucalyptus globusus, Artemisia absinthium.



Для контроля усвоения полученных знаний Вам предлагается ответить на задания проверочного теста:

- 1. На рисунке изображена формула соединения:
 - 1. цитронеллол
 - 2. ТИМОЛ
 - 3. фарнезол
 - 4. хамазулен
 - 5. ледол

1. Правильный ответ: 4 – хамазулен

- 2. $C_{15}H_{24}$ это общая формула группы терпенов:
 - гемитерпены
 - 2. монотерпены
 - 3. сесквитерпены
 - 4. дитерпены
 - 5. тритерпены

2. Правильный ответ: 3 - сесквитерпены

- 3. Каротиноиды относятся к группе терпенов:
 - 1. гемитерпены
 - 2. монотерпены
 - 3. сесквитерпены
 - 4. дитерпены
 - 5. тритерпены
 - 6. тетратерпены

3. Правильный ответ: 6 - тетратерпены

- 4. В состав эфирных масел входят группы терпенов:
 - гемитерпены
 - 2. монотерпены
 - 3. сесквитерпены
 - 4. дитерпены
 - 5. тритерпены
 - 6. тетратерпены

- 4. Правильный ответ:
 - 2 монотерпены
 - 3 сесквитерпены

- 5. К ациклическим монотерпеноидам относится:
 - 1. линалоол
 - 2. ментол
 - 3. ТИМОЛ
 - **4.** ледол
 - 5. фарнезол

5. Правильный ответ: 1 - линалоол

- 6. К моноциклическим монотерпеноидам относится:
 - 1. линалоол
 - 2. цинеол
 - 3. ТИМОЛ
 - 4. хамазулен
 - 5. фарнезол
 - 6. камфора

6. Правильный ответ: 2 - цинеол

- 7. Ледол относится к группе терпеноидов:
 - 1. моноциклические монотерпены
 - 2. бициклические монотерпены
 - 3. моноциклические сесквитерпены
 - 4. бициклические сесквитерпены
 - 5. трициклические сесквитерпены

7. Правильный ответ: 5 – трициклические сесквитерпены

- 8. Эндогенные терпеноидсодержащие структуры, возникающие за счет выделения эфирного масла в межклеточное пространство и раздвижения клеток, называются:
 - группа идиобластов
 - 2. схизогенные вместилища
 - 3. лизигенные вместилища
 - 4. железистая поверхность
 - 5. эфиромасличные железки

8. Правильный ответ: 2 – схизогенные вместилища

- 9. Железистая поверхность относится к типу терпеноидных структур:
 - 1. эндогенные
 - 2. ЭКЗОГЕННЫЕ

9. Правильный ответ: 2 - экзогенные

- 10. Эфирномасличные железки, состоящие из 6-8 выделительных клеток, расположенных по кругу в 1 ярус, характерны для семейства:
 - 1. Lamiaceae
 - 2. Asteraceae

10. Правильный ответ: 1 - Lamiaceae

- 11. Промежуточным продуктом биосинтеза терпенов является:
 - шикимовая кислота
 - 2. мевалоновая кислота
 - 3. пара-оксибензойная кислота
 - 4. оксикоричная кислота

11. Правильный ответ: 2 – мевалоновая кислота

- 12. Биогенетическим предшественником стероидных соединений является:
 - 1. гераниол
 - 2. фарнезол
 - 3. линалоол
 - 4. сквален
 - 5. ледол

12. Правильный ответ: 4 - сквален

- 13. Смоляные кислоты относятся к группе терпенов:
 - гемитерпены
 - 2. монотерпены
 - 3. сесквитерпены
 - 4. дитерпены
 - 5. тритерпены
 - 6. тетратерпены

13. Правильный ответ: 4 – дитерпены

- 14. Летучие, подвижные, бесцветные или окрашенные жидкости, представляющие собой сложные смеси органических веществ, главным образом терпеновой природы, с характерным запахом, называются:
 - 1. терпеноиды
 - 2. эфирные масла
 - жирные масла
 - 4. терпены
 - 5. летучие масла

14. Правильный ответ: 2 – эфирные масла

- 15. 5-углеродное соединение с разветвленной цепью и двумя сопряженными двойными связями, являющееся составной частью терпенов называется:
 - 1. гераниол
 - 2. пентен
 - 3. пентин
 - 4. изопрен
 - 5. терпен

15. Правильный ответ: 4 – изопрен

- Если вы правильно ответили на 11 вопросов и более, то считайте, что материал усвоен! Примите наши поздравления!
- Если вы правильно ответили на меньшее число вопросов, *прочитайте текст пособия еще раз* и вновь попробуйте свои силы! Удачи!

Рекомендуемая литература

- У вас возникли вопросы? Вы хотите узнать больше? Ответы на вопросы можно узнать здесь.
- *Муравьева, Д.А.* Фармакогнозия: учебник для студентов фармацевтических вузов/ Д. А. Муравьева, И. А. Самылина, Г. П. Яковлев. -4-е изд.,перераб. и доп.. -М.: Медицина, 2007. -656 с.

Рекомендуемая литература

- *Ткачёв, А.В.* Исследование летучих веществ растений / А.В.Ткачёв. Новосибирск: Издательско-полиграфическое предприятие «Офсет», 2008. 969 с.
- Куркин, В.А. Фармакогнозия: учебник для студентов фармацевтических вузов / В.А. Куркин.
 2-е изд., перераб и доп. Самара: ООО "Офорт"; ГБОУВПО "СамГМУ Росздрава", 2007. 1239 с.

Рекомендуемая литература

• Фундаментальная электронная библиотека «Флора и фауна». – Режим доступа: http://ashipunov.info/shipunov/school/sch-ru.htm

Авторы:

Макарова Дарья Леонидовна – доцент кафедры фармакогнозии и ботаники НГМУ, кандидат фармацевтических наук.

Величко Виктория Владимировна – доцент кафедры фармакогнозии и ботаники НГМУ, кандидат фармацевтических наук.

Круглов Дмитрий Семенович – старший преподаватель кафедры фармакогнозии и ботаники НГМУ, кандидат технических наук.

Ханина Миниса Абдуллаевна – заведующая кафедрой фармакогнозии и ботаники НГМУ, доктор фармацевтических наук, профессор.

<u>К содержанию...</u>

Контактная информация:

Кафедра фармакогнозии и ботаники фармацевтического факультета НГМУ

<u>Тел.:</u> 225-07-13

E-mail: mak_dl@mail.ru

