Звонкова Светлана Геннадьевна

ОСОБЕННОСТИ ТУБЕРКУЛЁЗНОЙ ИНФЕКЦИИ У ДЕТЕЙ С РАЗЛИЧНЫМИ ГЕНЕТИЧЕСКИМИ ПОКАЗАТЕЛЯМИ

14.01.16 – фтизиатрия

Автореферат диссертации на соискание учёной степени кандидата медицинских наук

Работа выполн	ена в госуда	рственном бюджетно	ом образователы	ном учреждении
дополнительно	ого професси	онального образован	ия «Иркутская	государственная
медицинская	академия	последипломного	образования»	Министерства
здравоохранен	ия Российско	ой Федерации		
TT U				

Научный руководитель:	
доктор медицинских наук, доцент	Зоркальцева Елена Юльевна
Научный консультант:	
доктор медицинских наук	Огарков Олег Борисович
Официальные оппоненты:	
доктор медицинских наук, доцент	Мордык Анна Владимировна
3 7 7 7 7	верситет, заведующий кафедрой фтизиатрии и
кандидата биологических наук	- · ·
(Новосибирский научно-исследовательский и сотрудник лаборатории молекулярно-генетиче	нститут туберкулеза, г. Новосибирск, научный еских исследований)
Саха (Якутия) Научно-практический це	
на заседании диссертационного совета	» 2016 г. в «» часов д 208.062.01 на базе Новосибирского оситета (630091, г. Новосибирск, Красный
•	в библиотеке и на сайте Новосибирского оситета (630091, г. Новосибирск, Красный ation/381)
Автореферат разослан «»	2016 г.
Ученый секретарь	
диссертационного совета	Н. Г. Патурина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. По оценкам Всемирной организации приблизительно здравоохранения (BO3), треть человеческой популяции инфицирована штаммами M. tuberculosis. Однако, несмотря на высокую инфицированность населения M. tuberculosis, заболевание развивается лишь у Этот факт указывает на генетические малой части людей. восприимчивости к туберкулёзу человека (Андреевская С. Н. и соавт., 2006). туберкулёза развиваются у 5–10 % Активные формы ИЗ числа всех инфицированных МБТ (Сахно Л. В., 2012).

Исследования полиморфизма трёх генетических локусов – гена *CD209* –336 A/G (rs4804803) (DC – SIGN), гена *CCL2* –2518A/G (rs1024611) моноцитарного хемоатрактивного белка 1 типа (MCP-1), гена *INFγ* +874A/T (rs2430561) интерферона-γ (*INFγ*) – у взрослых показали, что их вариабельность достоверно изменяется у больных туберкулёзом в некоторых человеческих популяциях. Указанные гены определяют уровень иммунного ответа при туберкулёзе и, как показывают единичные работы зарубежных исследователей, течение туберкулёза (Rovin B., Lu L., Saxena R., 1999; Etokebe G. E. et. al., 2006).

В целом по Российской Федерации уровень заболеваемости туберкулёзом снижается медленными темпами, при этом в Сибирском федеральном округе (СФО) характеризуется более высокими показателями заболеваемости. По итогам 2014 года, эпидемическая ситуация по туберкулёзу в Сибирском федеральном округе и Дальневосточном федеральном округе имеет тенденцию к стабилизации со снижением показателей заболеваемости и смертности от туберкулёза в большинстве территорий (Нечаева О.Б. и соавт., 2015). Однако основные эпидемиологические показатели превышают среднероссийские в 1,6–1,9 раза (Мурашкина Г. С. и и соавт., 2011). Иркутская область является одной из территорий с наиболее напряжённой эпидемиологической ситуацией по туберкулёзу (Зоркальцева Е. Ю., 2009; Воробьёва О. А., 2005, 2010).

Туберкулёзная инфекция у детей и подростков в СФО и ДФО остаётся серьёзной проблемой. Основные эпидемиологические показатели превышают российские в 1,5–2 раза и являются самыми высокими в Российской Федерации (Силайкина С. Т. и соавт., 2011).

Идентификация генов и их аллелей, от экспрессии которых зависит чувствительность или устойчивость к туберкулёзу, позволила бы не только глубоко проникнуть в фундаментальные механизмы иммунитета и развития

патологического процесса при туберкулёзе, но и приблизила бы к реальности использование методов генетического типирования для выявления среди здоровых людей лиц с генетически повышенным риском заражения туберкулёзом, требующих первоочередных мер профилактики. В свою очередь, это способствовало бы улучшению организации противотуберкулёзных мероприятий и эпидемиологической ситуации в целом, что и определило необходимость настоящего исследования на современном этапе.

Цель исследования. Оценить влияние генетических факторов – соматотипа и генов *CD209* –336 A/G (DC-SIGN), *CCL2* –2518A/G (MCP-1) и *INFy* +874A/T — на восприимчивость к туберкулёзу и течение туберкулёзного процесса у детей для разработки индивидуальных подходов к профилактике и лечению данного заболевания.

Задачи исследования

- 1. Проанализировать течение туберкулёза и эффективность лечения у больных туберкулёзом детей в современных условиях.
- 2. Определить соматотип у здоровых, инфицированных и больных туберкулёзом детей, оценить влияние соматотипа на восприимчивость и течение туберкулёзной инфекции у детей в условиях неблагоприятной эпидемиологической ситуации.
- 3. Определить полиморфизм генов CD209 –336 A/G DC–SIGN (CD209 рецептор), CCL2 –2518A/G (MCP-1 моноцитарного хемоатрактивного белка 1 типа), $INF\gamma$ +874A/T (интерферона γ) у здоровых, инфицированных и больных туберкулёзом детей;
- 4. Изучить влияние полиморфизма генов CD209 –336 A/G (DC-SIGN), CCL2 –2518A/G (MCP-1) и $INF\gamma$ +874A/T на восприимчивость к туберкулёзу и течение заболевания у детей.

Научная новизна. Впервые в Российской Федерации изучен полиморфизм генов CD209 –336 A/G (DC-SIGN), CCL2 –2518A/G (MCP-1) и $INF\gamma$ +874A/T (INF γ) у здоровых, инфицированных и больных туберкулёзом детей, а также влияние полиморфизма генов на клиническое течение туберкулёза.

Впервые установлена зависимость клинического течения туберкулёза от определенных аллелей изучаемых генов: положительная клинико-рентгенологическая динамика на ранних сроках лечения ассоциируется с наличием аллеля –336A гена *CD209* (DC-SIGN); склонность к хроническому

течению туберкулёза – с наличием аллеля –2518A гена *CCL2* (MCP-1).

Впервые определена связь полиморфизма генов CD209 (DC-SIGN) и гена $INF\gamma$ с характеристикой показателей периферической крови в процессе лечения туберкулеза.

Практическая значимость. У детей, носителей аллеля +874A гена $INF\gamma$, абсолютное количество лимфоцитов выше в начале основного курса лечения, а через четыре месяца от начала лечения выше количество моноцитов.

Изученные нами полиморфизмы вышеперечисленных генов влияют на туберкулёза, характер клинического течения что даёт возможность индивидуального подхода к лечению туберкулёза у детей, прогнозировать течение заболевания, проводить персонифицированное лечение туберкулёза, подбирать оптимальные сроки интенсивной фазы химиотерапии (ХТ) и сроки стационарного лечения. Для определения оптимальных сроков интенсивной фазы лечения основного курса химиотерапии, наряду с раннее используемыми показателями, целесообразно клинико-рентгенологическими учитывать полиморфизм CD209 –336 A/G (DC – SIGN) гена. Наличие AA генотипа CCL2 –2518A/G (MCP1) гена у детей следует рассматривать как фактор риска хронизации туберкулёзного процесса, что требует обязательного стационарного лечения противотуберкулезными препаратами, учета сведений о спектре лекарственной чувствительности у больного в очаге, если ребенок заболел из контакта, а при отсутствии положительной динамики через 2 месяца – возможной коррекции лечения.

Формировать группы риска по туберкулёзу с учётом типа конституции. В группу риска по туберкулёзу могут быть включены инфицированные туберкулёзом дети астеноидного и астеноидно-торакального типов конституции, что требует проведения им индивидуальных профилактических мероприятий для предотвращения развития туберкулёза.

Основные положения работы могут быть использованы в качестве материала для преподавания на кафедрах туберкулёза Иркутского государственного медицинского университета.

Положения, выносимые на защиту

1. Клиническая структура туберкулеза у детей в условиях напряженной эпидемиологической ситуации характеризуется значительным удельным весом осложненных (35,0 %) и генерализованных (5 %) форм, замедленной динамикой туберкулезного процесса на фоне противотуберкулезной терапии с

формированием необратимых изменений в корнях и лёгочной ткани в виде единичных и множественных кальцинатов.

- 2. Предрасположенность к туберкулёзу у детей связана с астеноидным и астеноидно-торакальным соматотипами.
- 3. Полиморфизм генов CD209 –336 A/G (DC-SIGN), CCL2 –2518A/G (MCP-1) и $INF\gamma$ +874A/T не оказывает влияния на восприимчивость к туберкулёзной инфекции у детей.
- 4. Клиническое течение туберкулёза у детей зависит от полиморфизма изучаемых генов: аллель –2518*A* гена *CCL2* у детей ассоциируется с неблагоприятным течением туберкулёза, аллель –336*A CD209* (DC-SIGN) гена связана с благоприятным течением туберкулёзного процесса.
- 5. Полиморфизм гена $INF\gamma$ +874A/T оказывает влияния на содержание лимфоцитов и моноцитов в периферической крови у больных туберкулёзом детей аллель +874A гена $INF\gamma$ ассоциируется с более высоким содержанием лимфоцитов и моноцитов в периферической крови.

Апробация работы. Основные положения диссертации были доложены и обсуждены на заседаниях научного общества фтизиатров Иркутской области (Иркутск 2010, 2011), на научно-практической конференции «Актуальные проблемы противотуберкулёзной помощи перспективы И 2011), совершенствования» (Улан-Удэ, Бурятия, Всероссийской на научно-практической конференции с международным участием «Актуальные вопросы профилактики, диагностики и лечения туберкулеза у детей и подростков» (Москва, 2013).

результатов Внедрение исследования. Результаты исследования используются В преподавании на кафедрах туберкулеза Иркутской государственной медицинской академии последипломного образования и Иркутского государственного медицинского университета. Рекомендации по формированию групп риска среди детей в зависимости от типа конституции внедрены в работу детского диспансерного отделения Иркутской областной клинической туберкулёзной больницы и Областной детской туберкулезной больницы. Опубликованы методические рекомендации «Некоторые генетические механизмы предрасположенности к туберкулёзу».

Публикации. Результаты данного исследования опубликованы в 11 печатных работах, в том числе 2 статьи в журналах и изданиях, которые включены в перечень российских рецензируемых научных журналов для

публикаций основных результатов материалов диссертации.

Объем и структура диссертации. Диссертация изложена на 208 страницах машинописного текста и состоит из введения, 3 глав, заключения, выводов, практических рекомендаций и списка литературы, иллюстрирована 40 таблицами и 9 рисунками. Список литературы содержит 230 источников, из которых 56 – зарубежных.

Личный вклад автора. Обследование детей, забор материала для генетических исследований, статистическая обработка и анализ проведены Генетические исследования полиморфизма лично автором. генов CD209 (DC-SIGN гена -336A/G), гена CCL2 (MCP1 -2518A/G), гена INFy +874A/T) y 60 больных туберкулёзом детей, 86 инфицированных у 100 здоровых детей проведены О. Б. Огарковым на базе Иркутского областного клинического консультативно-диагностического центра.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследование одобрено локальным этическим комитетом Иркутского государственного медицинского университета.

Работа проводилась в 2008–2010 гг. в детских дошкольных и школьных общеобразовательных учреждениях г. Иркутска (детских садах № 8, 12, 14, 162; санаторно-лесной школе-интернате № 12; в школах № 4; 8; 20; 55; в детском доме № 2 г. Иркутска), а также в процессе оказания медицинской помощи на базе Иркутской областной детской туберкулёзной больницы. Генетические исследования проводили на базе Иркутского областного клинического консультативно-диагностического центра.

Комплексное обследование проведено 290 детям в возрасте от 1 года до 15 лет, славянской национальности. Среди обследованных мальчиков было 169, девочек 121. Распределение детей по возрасту и полу представлено в таблицах 1 и 2. Комплексно обследованные дети были распределены на 3 группы: 1-я группа — здоровые (туберкулин отрицательные, 100 человек), 2-я группа — инфицированные туберкулёзом (90 человек), 3-я группа — больные разными клиническими формами туберкулёза (100 человек). Достоверных отличий между группами по полу и возрасту в соответствии с критерием Манна — Уитни не обнаружено.

Таблица 1 – Распределение детей по возрасту

Возраст	Здор	Здоровые Из		Инфицированные		Больные		Всего	
(лет)	туберкулин о	трицательные	МБТ	дети	туберкулёзом				
	де	ТИ			Д	ети			
	n	%	n	%	n	%	n	%	
1–3 года	4	4,0	1	1,1	12	12,0	17	5,8	
4–7 лет	44	44,0	57	63,8	39	39,0	140	48,2	
8-11 лет	40	40,0	18	20,0	34	34,0	92	31,8	
12-15 лет	12	12,0	14	15,6	15	15,0	41	14,2	
Всего	100	100,0	90	100,0	100	100,0	290	100,0	

Таблица 2 – Распределение детей по полу

Пол	Здоровые		Инфицированные		Больные		Всего	
	туберкулин о	грицательные	МБТ	Гдети	туберкулёзом			
	де	ТИ			дети			
	n	%	n	%	n	%	n	%
Мальчики	59	59,0	54	60,0	56	56,0	169	58,2
Девочки	41	41,0	36	40,0	44	44,0	121	41,8
Всего	100	100,0	90	100,0	100	100,0	290	100,0

Исследование соматотипа проведено у всех 290 обследованных нами детей с определением конституциональных типов, которые были представлены как астеноидные и астеноидно-торакальные, торакальные и торакально-мышечные, мышечные и мышечно-дигестивные.

Из 290 обследованных нами детей проведены генетические исследования полиморфизма генов CD209 –336 A/G (DC – SIGN) гена, гена CCL2 –2518A/G (MCP1), гена $INF\gamma$ +874A/T у 60 больных туберкулёзом детей, у 86 инфицированных и у 100 здоровых детей.

Дизайн исследования — открытое проспективное сравнительное клиническое исследование по типу «случай-контроль».

Критерии включения: больные разными клиническими формами туберкулёза дети (100 человек); инфицированные МБТ дети (90 человек); здоровые (туберкулин отрицательные) дети (100 человек).

Критерии исключения: случаи сочетания туберкулёза с ВИЧ-инфекцией, наличие тяжелой сопутствующей патологии (врождённые аномалии и пороки развития, сахарный диабет, наследственные заболевания).

Исследование проходило в 3 этапа (рисунок 1): Комплексно обследованные дети в 2008–2010 гг. (n = 290) Больные (n = 100) чел. Инфицированные (n=90 Здоровые (n = 100) чел. Туберкулезный плеврит (n = 3) $\Pi TK (n = 5)$ ТВГЛУ (n = 79) Генерализованный Очаг. т-3 (n = 2)TВнеЛЛ(n=3)туберкулез (n = 5)Инфильтративный туберкулез (n = 3)2 этап Определение соматотипа (n = 290) 2008–2010 гг. Здоровые Инфицированные Больные (n = 100) чел. (n = 90 чел.)(n = 100) чел. II III Ш Ш II II n=25n = 51n=24n=15n=12n=50n = 38n=27n = 48

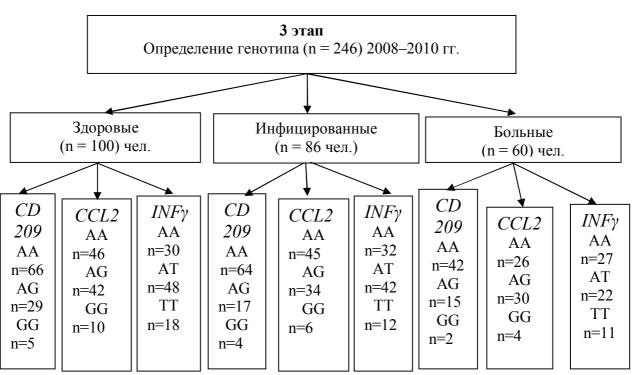
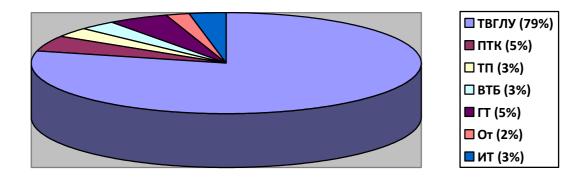


Рисунок 1 – Схема исследования

На 1-м этапе были разработаны анкеты для сбора анамнестических антропометрических данных, клинико-рентгенологических и лабораторных показателей. Проведено комплексное обследование 290 детям в возрасте от 1 года до 15 лет, славянской национальности, которые были распределены на 3 группы: 1-я группа – здоровые (туберкулин отрицательные, 100 человек); 2-я группа – инфицированные МБТ (90 человек); 3-я группа – больные разными клиническими формами туберкулёза (100 человек). Для первой решения изучены половозрастные, социальные, задачи туберкулёзной клинико-рентгенологические характеристики детей инфекцией.

На 2-м этапе для решения второй задачи всем вышеуказанным детям проведено исследование соматотипа (290 человек), с определением конституциональных типов, которые были представлены как астеноидные и астеноидно-торакальные (I), торакальные и торакально-мышечные (II), мышечные и мышечно-дигестивные (III). Оценено влияние соматотипа на восприимчивость детей к туберкулёзу.


На 3-м этапе для решения третьей задачи собраны биологические образцы (щёчный соскоб) для выделения ДНК и проведены генетические исследования полиморфизма генов DC-SIGN гена -336A/G, гена MCP1 -2518A/G, гена $INF\gamma$ +874A/T) у 60 больных туберкулёзом детей, у 86 инфицированных и у 100 здоровых детей. Были определены абсолютные и относительные частоты генотипов и аллелей для генов DC-SIGN гена -336A/G, гена MCP1 -2518A/G, гена $INF\gamma$ +874A/T.

Для решения четвертой задачи изучено влияние полиморфизма вышеуказанных генов на восприимчивость и особенности течения туберкулёзного процесса у детей.

Клиническая структура туберкулёза у больных туберкулёзом детей представлена на рисунке 2.

Обследованные инфицированные дети были распределены следующим образом:

- первичное инфицирование МБТ 29 детей (32,2 %);
- нарастание чувствительности к туберкулину 19 детей (21,3 %);
- гиперергическая реакция на туберкулин 13 детей (14,3 %);
- инфицированные микобактериями туберкулёза в течение 2-х лет и более 29 детей (32,2 %).

Примечания: туберкулёз внутригрудных лимфатических узлов — ТВГЛУ; первичный туберкулёзный комплекс — ПТК; туберкулёзный плеврит — ТП; туберкулёз внелёгочных локализаций — ВТБ; генерализованный туберкулёз — ГТ; очаговый туберкулёз — ОТ; инфильтративный туберкулёз — ИТ.

Рисунок 2 – Клиническая структура туберкулёза у обследованных детей

В работе использованы статистические отчётные документы противотуберкулёзных учреждений Иркутской области за период с 2007 по 2014 год, а также медицинская документация (формы 026у, 063у и 112у) дошкольно-школьных отделов амбулаторно-поликлинических учреждений.

Методы исследования:

- выкопировка медицинской документации;
- общеклинические методы исследования (общий анализ крови, общий анализ мочи); для сравнения значений гематологических показателей использовали показатели гемограммы здоровых детей жителей Иркутской области).
- микробиологические исследования (люминесцентная микроскопия мокроты, посев мокроты на питательные среды Левенштейна Йенсена и Финна II осуществлялись больным туберкулезом детям).
- иммунологические методы исследования (определение противотуберкулезных антител методом иммуноферментного анализа с визуальным учётом результатов; оценка результатов проводилась следующим образом: отрицательный, сомнительный и положительный результаты; определение показателя иммуноцитоприлипания (ПИЦП) по методике А. И. Аутеншлюса (1981; показатель до 10 % свидетельствовал об отсутствии

активности туберкулёзного процесса, 10–14 % – об умеренной активности; более 14 % – о высокой активности);

- генетические методы исследования;

ДНК от больных туберкулёзом, инфицированных МБТ и здоровых детей выделяли из щёчных соскобов с помощью набора «ДНК-сорб» производства ЦНИИ Эпидемиологии по протоколу производителя). Для определения однонуклеотидного (SNP) полиморфизма генов DC-SIGN гена (CD209 рецептор), гена моноцитарного хемотаксического белка 1 типа — МСР1, гена интерферона-ү (INFү) использовали полимеразно-цепную реакцию (ПЦР). Полиморфизм генов DC-SIGN в позиции –336A/G (rs4804803), МСР1 –2518A/G (rs1024611) и INFу +874A/T (rs2430561) определяли ПЦР (Hazbon M. H. et al., 2004) в реальном времени с использованием праймеров и LNA-зондов, разработанных и синтезированных НПФ «Синтол» (Россия) на амплификаторе iQ-Cycler (БиоРад, США). Структуры праймеров и зондов приведены в таблице 3.

Таблица 3 – Структуры и концентрации использованных праймеров и зондов

Название	Структура	Конечная концентрация в ПЦР мкМ
DCSIGN –336 For	5'-ACT GTG TTA CAC CCC CTC CAC TAG-3'	0,3
DCSIGN –336 Rev	5'-AGG AAA GCC AGG AGG TCA CA-3'	0,3
DCSIGN Probe G	5'- R6G-CTGC(C-LNA)(C-LNA)(A-LNA)CCCTTGC -BHQ1- 3'	0,1
DCSIGN Probe A	5'- FAM-CTGC(C-LNA)(T-LNA)(A-LNA)CCCTTGC-BHQ1- 3'	0,1
MCP1 –2518 For	5'-GGG AGG GCA TCT TTT CTT GAC-3'	0,3
MCP1 –2518 Rev	5'- GGT GAA GGG TAT GAA TCA GAA AAG A-3	0,3
MCP1 Probe A	5'- R6G-GACAG(C-LNA)T(A-LNA)T(LNA-C)A(C-LNA)TTTC-BHQ1- 3'	0,1
MCP1 Probe G	5'- FAM-GACAG(C-LNA)T(G-LNA)T(LNA-C)A(C-LNA)TTTC-BHQ1- 3'	0,1
INFy +874 For	5'-TCA GAC ATT CAC AAT TGA TTT TAT TCT TAC -3'	0,3
INFy +874 Rev	5'-CCT TCC TGT AGG GAT TTA TTA TAC GAG C-3'	0,3
INFy Probe A	5'- FAM-CAAAATCAA(LNA-A)TC(LNA-A)CAC(A-LNA)CAC -BHQ1- 3'	0,1
INFy Probe T	5'- R6G-CAAAATCAA(LNA-A)TC(LNA-T)CAC(A-LNA)CAC-BHQ1- 3'	0,1

Полимеразно-цепную реакцию проводили в 15 мкл реакционной смеси следующего состава: 1х ПЦР буфер (Интерлабсервис); 3 мМ MgSO4 (Интерлабсервис); смеси олигонуклеотидов и зондов (Синтол) в эквимолярных

концентрациях (см. табл. 3), 4NTP (Интерлабсервис) в конечной концентрации 200 мкМ каждого нуклеотида; модифицированной ТаqF полимеразу (Интерлабсервис) по 1 ед на реакцию и ДНК образца в концентрации около 50 нг на реакцию. Полимеразно-цепная реакция (ПЦР) инициировалась 15-минутным прогревом реакционной смеси при 95 $^{\circ}$ C (для активации ТаqF полимеразы) с последующей амплификацией в течение 45 циклов, состоящей из этапов: плавление при 95 $^{\circ}$ – 30 сек; отжига при 56 $^{\circ}$ –67 $^{\circ}$ (в зависимости от расчетной температуры каждого набора) – 30 сек; элонгации при 72 $^{\circ}$ – 20 сек;

- определение соматотипа в зависимости от соотношения костной, мышечной и жировой ткани по методике, изложенной в методических «Диагностика рекомендациях типа конституции И состояния кислородообеспечивающей функции эритроцитарной системы, прогноз, профилактика её повреждений» и позже модифицированной в процессе работы (Поблинкова Е. Ю., 1993). Методика была модифицирована следующим образом: понятия «тонкие», «средние», «массивные» эпифизы были заменены их обхватом в сантиметрах. «Средними» считались показатели с отклонениями $\pm I\sigma$. Отклонения обхвата запястий и лодыжек более или менее, чем на $\pm I\sigma$, расценивались как «массивные» или «тонкие» (Поблинкова Е. Ю., 1993).

Степень развития подкожной жировой клетчатки определяли путём измерения кожно-жировых складок. Результаты осмотра и измерений переводили в баллы, а затем определяли соматотип по таблице 4.

Таблица 4 – Определение соматотипа у детей

	Соматоскопические признаки					
Тип	Грудная	Ноги	Живот	Мышцы	Жир	Кость
конституции	клетка					
Астеноидный	уплощенная	О	впалый	1	1	1
Торакальный	цилиндрическая	O; H; X	прямой	1–2	1–2	1–2
Мышечный	цилиндрическая	O; H; X	прямой	2–3	1–2	2–3
	или конусообразная					
Дигестивный	конусообразная	X	выпуклый	1–2	2–3	3

Примечание. При наличии смежных признаков в ряду – тип смешанный (например: астеноидно-торакальный)

- статистическую обработку данных проводили с помощью пакета программ биостатистика (BIOSTAT) и Statistica 6.0. Поло-возрастные различия

между группами определяли с использованием непараметрического критерия Манна – Уитни. Распределение соматотипов между группами сравнивали с использованием критерия χ^2 и t-критерия Стьюдента. Равновесие генотипов по Вайнбергу между сравниваемыми группами использованием Hardy – Weinberg Equilibrium Calculator (XB калькулятор). Были получены частоты аллелей и генотипов, проверку значимости различий между которыми в исследуемых группах проводили с использованием хи-квадрата Пирсона. Статистический анализ ассоциации полиморфизма генов выполнен с использованием метода χ2 в программе BIOSTAT. Анализ изменения в гематологических показателей (общего динамике числа лейкоцитов, лимфоцитов, моноцитов, СОЭ) выполнен с использованием непараметрического критерия Вилкоксона в программе Statistica 6.0. Различия считали достоверными при $p \le 0.05$.

РЕЗУЛЬТАТЫ РАБОТЫ И ИХ ОБСУЖДЕНИЕ

На момент исследования у обследованных детей распределение клинических форм было следующим: туберкулёз внутригрудных лимфатических узлов (ТВГЛУ) – у 79 (79,0 %); первичный туберкулёзный комплекс (ПТК) – у 5 (5,0 %); туберкулёзный плеврит (ТП) – у 3 (3,0 %); туберкулёз внелёгочных локализаций (ВТБ) – у 3 (3,0 %); генерализованный туберкулёз (ГТ) – у 5 (5,0 %); очаговый туберкулёз (ОТ) – у 2 (2,0 %); инфильтративный туберкулёз (ИТ) – у 3 (3,0 %).

Осложнённое течение туберкулёза наблюдалось у 35 человек, что составляет 35,0 % от 100 обследованных нами больных туберкулёзом детей. Структура осложнений у обследованных детей представлена на рисунке 3.

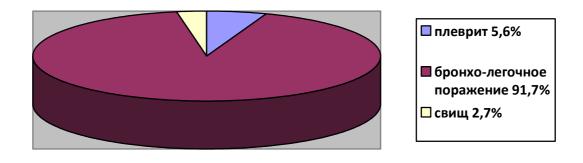


Рисунок 3 – Структура осложнений у обследованных детей

Рентгенологическая динамика к окончанию основного курса лечения у обследованных детей с различной длительностью интенсивной фазы лечения представлена в таблице 5.

Таблица 5 – Рентгенологическая динамика и длительность интенсивной фазы лечения*

Рентгенологическая	Длительность интенсивной фазы						
динамика	60 доз		90 доз		120 доз и более		Всего
динамика	n	%	n	%	n	%	n
Полное рассасывание	8	42,0*	6	14,3	1	2,5*	15
Частичное рассасывание	3	16,0	12	28,6	11	28,2	26
Мелкие кальцинаты	5	26,0	21	50,0	13	33,4	39
Крупные кальцинаты	3	16,0	3	7,1	14	35,9	20
Всего	19	100,0	42	100,0	39	100,0	100
*p < 0,05, t-критерий Стьюдента.							

Из таблицы 5 видно, что положительная рентгенологическая динамика к окончанию основного курса лечения в виде полного рассасывания туберкулёзных изменений наблюдалась у 15,0 % обследованных детей, частичного рассасывания с формированием фиброзных изменений отмечена у 26,0 %, исход в виде формирования единичных мелких кальцинатов составил 39,0 %, остаточные изменения в виде множественных, распространённых кальцинатов выявлены у 20,0 % детей.

Дети получали комплексное лечение с использованием режимов химиотерапии в соответствии с Приказом №109 МЗ РФ от 21 марта 2003 г. «О совершенствовании противотуберкулёзных мероприятий в Российской Федерации». Выбор режима химиотерапии, решение о продлении интенсивной фазы лечения или переходе к фазе продолжения основного курса лечения осуществлялись по решению ЦВКК или ВК. Выбор режима химиотерапии основывался на распространённости процесса, наличии осложнений, а также с учётом лекарственной устойчивости МБТ у взрослого больного в очаге инфекции в тех случаях, если заболевший ребёнок был из контакта.

В лечении больных туберкулёзом детей были использованы следующие режимы химиотерапии: у 89 (89,0 %) детей I режим химиотерапии, у 5 (5,0%) – IIБ режим, у 5 (5,0%) – III режим химиотерапии, у 1 (1,0%) – IV режим. Эффективность лечения оценивалась по клиническим показателям:

купированию симптомов интоксикации, прибавке в весе, по результатам туберкулинодиагностики, по лабораторным показателям и данным рентгено-томографического исследования. Такой критерий, как наличие и прекращение бактериовыделения не использовался в виду отсутствия бактериовыделения у обследованных детей.

Здесь и далее мы ориентировались на длительность интенсивной фазы, а не основного курса лечения, поскольку часть детей была выписана в фазе продолжения лечения под наблюдение участкового фтизиатра.

Средняя продолжительность интенсивной фазы лечения составила $98,87 \pm 0,48$ доз. У 19 (19,0 %) обследованных детей длительность интенсивной фазы составила 60 доз, у 42 (42,0 %) детей – 90 доз. У 39 (39,0 %) интенсивная фаза составила не менее 120 доз.

На рисунке 4 представлена длительность интенсивной фазы лечения у больных детей в зависимости от наличия осложнений и распространённости туберкулёзного процесса.

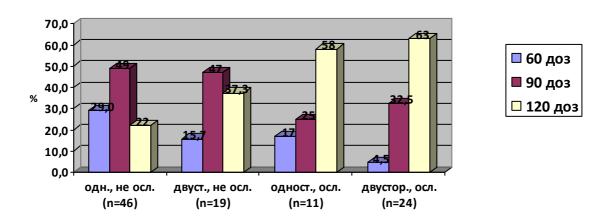


Рисунок 4 — Длительность интенсивной фазы лечения у больных туберкулёзом детей в зависимости от наличия осложнений и распространённости процесса

Снижение эффективности лечения, несмотря на проведение длительных курсов химиотерапии с использованием не только основных, но и резервных препаратов, заставляет задуматься над поиском новых индивидуальных подходов для повышения эффективности лечения, которые могут быть связаны с изучением генетических показателей.

На сегодняшний день известно более 180 генов-кандидатов, ответственных за восприимчивость к туберкулезной инфекции, однако, как показывают многочисленные работы, различные авторы, изучая одни и те же

гены, демонстрируют, зачастую, противоположные результаты. Эти, кажущиеся на первый взгляд, противоречия, возможно, являются следствием того, что особенности строения отдельных генов у людей, проживающих на конкретной территории, могут быть связаны с воздействием превалирующих в данном регионе генотипов *М. tuberculosis* (Синьков В. В., 2012).

В нашей работе мы исследовали влияние на течение туберкулёза таких генетических показателей: *CD209* (DS-SIGN) –336A/G гена, гена *CCL2* (MCP-1) –2518A/G и гена *INF* у *INF* у +874A/T. Распределение изученных аллельных вариантов генов в исследуемых группах соответствовало ожидаемому при равновесии Харди – Вайнберга и представлено в таблицах 6, 7, 8, где приведены абсолютные и относительные частоты генотипов и аллелей для генов DC-SIGN гена –336A/G, гена MCP1 –2518A/G, гена *INF* у +874A/T у обследованных детей.

Таблица 6 – Полиморфизм –336A/G промотора гена DC-SIGN*

Группа	Аллель		Генотип		
	A	G	AA	AG	GG
Больные	99/118	19/118	42/59	15/59	2/59
	(0,84)	(0,156)	(0,712)	(0,264)	(0,024)
Инфицированные	145/170	25/170	64/85	17/85	4/85
	(0,868)	(0,132)	(0,753)	(0,23)	(0,017)
Здоровые	161/200	39/200	66/100	29/100	5/100
	(0,812)	(0,188)	(0,66)	(0,305)	(0,035)
*p > 0,05		•		•	

Таблица 7 – Полиморфизм –2518А/G промотора гена МСР-1*

Группа	Алл	Генотип			
	A	G	AA	AG	GG
Больные	82/120	38/120	26/60	30/60	4/60
	(0,658)	(0,342)	(0,433)	(0,45)	(0,117)
Инфицированные	124/170	46/170	45/85	34/85	6/85
	(0,728)	(0,272)	(0,529)	(0,396)	(0,074)
Здоровые	134/196	62/196	46/98	42/98	10/98
	(0,685)	(0,315)	(0,469)	(0,431)	(0,099)
*p > 0,05		<u>'</u>	ı	1	1

Таблица 8 – Полиморфизм +874A/T гена INFү*

Группа	Ал	пель	Генотип		
	A	T	AA	AT	TT
Больные	76/120	44/120	27/60	22/60	11/60
	(0,671)	(0,329)	(0,45)	(0,442)	(0,108)
Инфицированные	106/172	66/172	32/86	42/86	12/86
	(0,61)	(0,39)	(0,372)	(0,476)	(0,152)
Здоровые	108/192	84/192	30/96	48/96	18/96
	(0,559)	(0,441)	(0,313)	(0,493)	(0,194)
*p > 0,05			•	•	

Установлено, что полиморфизм CD209 –336 A/G (DS – SIGN) гена влияет не на восприимчивость к туберкулёзу у детей, а на особенности клинического течения туберкулёза: у носителей аллеля –336A CD209 длительность основного курса лечения оказалась меньше, содержание лимфоцитов в периферической крови выше. Показатели CO3 к окончанию основного курса химиотерапии были ниже у детей с гомозиготным (AA) вариантом указанного генотипа. В таблице 9 представлены значения абсолютных и относительных частот распределения вариантов генотипа и аллелей DC-SIGN гена -336A/G в зависимости от длительности интенсивной фазы у обследованных детей.

Таблица 9 – Полиморфизм –336A/G промотора гена DC-SIGN у больных туберкулёзом детей в зависимости от длительности интенсивной фазы

Длительность	Аллель		Генотип		
интенсивной фазы	A	G	AA	AG	GG
60 доз	*25/26	*1/26	12/13	1/13	0/13
	(0,961)	(0,039)	(0,923)	(0,076)	(0,001)
90 доз	39/44	5/44	18/22	3/22	1/22
	(0,886)	(0,114)	(0,819)	(0,136)	(0,045)
120 доз	*37/50	*13/50	13/25	11/25	1/25
	(0,740)	(0,260)	(0,520)	(0,440)	(0,040)
$*p = 0.04$ с поправкой по Йетсу. Примечание. $\chi 2 = 4.21$,					

Кроме гена CD209, определённую роль в патогенезе туберкулезной инфекции играют гены $IFN\gamma$ и CCL2. У детей, носителей аллеля +874A гена $INF\gamma$, абсолютное количество лимфоцитов выше в начале основного курса лечения, у детей, носителей +874A аллеля гена $INF\gamma$, через четыре месяца от

начала выше количество моноцитов. Аллель –2518*A* гена *CCL2* (MCP-1) в нашем исследовании ассоциируется с неблагоприятным влиянием на характер течения туберкулёзного процесса и способствует более длительному его течению.

Это позволяет использовать изученные нами полиморфизмы вышеперечисленных генов для прогнозирования характера клинического течения туберкулёза и даёт возможность индивидуального подхода к лечению туберкулёза у детей.

В качестве генетического фактора возможно использовать и такой показатель конституциональных особенностей организма, как соматотип, вклад наследственных признаков в который составляет 70-80 % (Поблинкова Е. Ю., 1993). исследовании выявлено преобладание астеноидного нашем астеноидно-торакального соматотипов у больных туберкулёзом детей, тогда как было больше летей c среди здоровых торакально-мышечным мышечно-дигестивным телосложением, что представлено 5. на рисунке Увеличение удельного веса детей с астеноидным типом конституции в последние десятилетие связано с влиянием неблагоприятных социальных факторов (Цыганков П. Ю., 2000). Мы видим сохранение указанной тенденции в период с 2008 по 2010 год по сравнению с периодом с 1997 по 1998 год, в социальной структуре больных туберкулёзом значительно преобладают дети из социально неблагополучных семей.

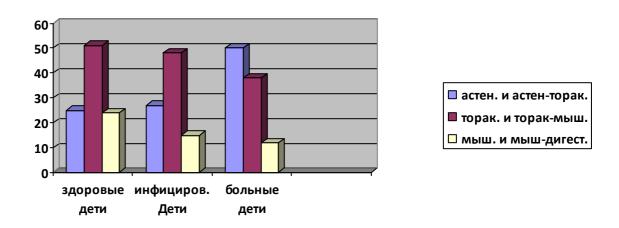


Рисунок 5 – Характеристика соматотипа у обследованных детей

Таким образом, в группу риска по туберкулёзу могут быть включены инфицированные туберкулёзом дети астеноидного и астеноидно-торакального типов конституции, что требует проведения им индивидуальных профилактических мероприятий для предотвращения развития туберкулёза.

ВЫВОДЫ

- 1. Клиническая структура туберкулеза у детей в условиях напряженной эпидемиологической ситуации характеризуется значительным удельным весом осложненных (35,0 %) и генерализованных (5 %) форм. У 75,0 % больных отмечается замедленная динамика туберкулезного процесса на фоне противотуберкулезной терапии. Исходами основного курса химиотерапии является формирование необратимых изменений в лёгких в виде единичных, мелких (39,0 % детей) или множественных, крупных кальцинатов (20,0 % детей).
- 2. Предрасположенность к туберкулезу ассоциируется с астеноидным и астеноидно-торакальным типами конституции.
- 3. Здоровые, инфицированные и больные туберкулезом дети не различались по генетическому полиморфизму генов: CD209 –336 A/G DC–SIGN (CD209 рецептор), CCL2 –2518A/G (MCP-1 моноцитарного хемоатрактивного белка 1 типа), $INF\gamma$ +874A/T (интерферона γ).
- 4. Полиморфизм *CD209* –336 A/G (DC SIGN) гена оказывает влияние на течение туберкулёза у детей: преобладание аллеля –336A гена *CD209* с гомозиготным (*AA*) вариантом ассоциируется с неосложнённым течением, с положительной клинико-рентгенологической динамикой уже к 2 месяцам лечения, с повышенным содержанием лимфоцитов и снижением показателя СОЭ к окончанию стационарного курса химиотерапии. Аллель –2518*A* гена *CCL1* у детей ассоциируется с неблагоприятным влиянием на характер течения туберкулёзного процесса и способствует его хронизации.
- 5. Аллель +874*A* гена *INF* у ассоциируется с более высоким содержанием лимфоцитов и моноцитов в периферической крови.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Принадлежность к астеноидному и астеноидно-торакальному типу конституции расценивать как дополнительный фактор риска при отборе детей для химиопрофилактики по результатам туберкулинодиагностики и Диаскинтеста. При отрицательном результате Диаскинтеста у детей из VI группы диспансерного учета проводить химиопрофилактику одним противотуберкулезным препаратом.
- 2. Показанием для исследования генотипической принадлежности детей по полиморфизму генов *CD209* DC–SIGN (CD 209 рецептор), *CCL1* (MCP-1 моноцитарного хемоатрактивного белка 1 типа), $INF\gamma$ (интерферона γ) является установление диагноза туберкулёза для планирования лечебных мероприятий.

3. Детям с гомозиготным вариантом (AA) DC-SIGN гена возможно планировать интенсивную фазу основного курса лечения в 60 доз, тогда как у детей с *AA* генотипом MCP-1 гена интенсивная фаза основного курса лечения должна быть не менее 90 доз.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. **Звонкова, С. Г.** Особенности туберкулёзной инфекции у детей с различными конституциональными типами и генотипами: DC-SIGN гена −336A/G, гена МСР1 −2518A/G, гена INFγ +874A/T / С. Г. Звонкова, Е. Ю. Зоркальцева // Сибирский медицинский журнал. − 2010. − № 6. − С. 151–153.
- 2. **Звонкова, С. Г.** Изучение особенностей полиморфизма генов DC-SIGN −336A/G, MCP1 −2518A/G, INFγ +874A/T и конституциональных типов у детей с туберкулёзной инфекцией / **С. Г. Звонкова,** О. Б. Огарков, Е. Ю. Зоркальцева // **Бюллетень Восточно-Сибирского научного центра СО РАМН**. − 2011. − Т. 78, № 2. − С. 198–201.
- 3. Чукавина, И. Ю. Заболеваемость туберкулёзом детей из очагов туберкулёзной инфекции в Иркутской области / И. Ю. Чукавина, **Звонкова С. Г.** // Бюллетень Северного государственного медицинского университета. − 2010. − №1, Т.ХХІV. − С. 56–57.
- 4. **Звонкова, С. Г.** Особенности влияния полиморфизма гена DC-SIGN -336A/G, гена MCP1 -2518A/G, гена INF γ +874A/T на изучаемые морфологические проявления туберкулёзной инфекции / **С. Г. Звонкова**, Е. Ю. Зоркальцева, О. Б. Огарков // Журнал «Здоровье детей Сибири». -2011. № 1. С. 115-120.
- 5. **Звонкова, С. Г.** Влияние конституциональных особенностей на восприимчивость к туберкулёзной инфекции / **С. Г. Звонкова**, Е. Ю. Зоркальцева // Проблемы туберкулёза в Якутии: эпидемиология, организация и лечение: сборник трудов. Якутск, 2010. № VII (XXX). С. 64—68.
- 6. **Звонкова, С. Г.** Восприимчивость к туберкулёзной инфекции у детей с различными соматотипами // Актуальные вопросы медицинской науки: сборн. науч. работ студентов и молодых учёных Всероссийской науч.-практ. конф. с международным участием, посв. 1000-летию г. Ярославля. Ярославль, 2010. С. 163.
 - 7. Звонкова С. Г. Некоторые особенности полиморфизма генов DC-

- SIGN –336A/G, MCP1 –2518A/G, INFγ +874A/T и соматотипов у детей с туберкулёзной инфекцией / С. Г. Звонкова, О. Б. Огарков, Е. Ю. Зоркальцева // Социально значимые заболевания: наука и практика: материалы науч.-практ. конф. с международным участием. Улан-Уде, 2011. С. 61–68.
- 8. Зоркальцева, Е. Ю. Исследование генетических факторов у детей с туберкулёзной инфекцией / Е. Ю. Зоркальцева, О. Б. Огарков, С. Г. Звонкова // 9-й съезд фтизиатров России, 1—3 июня 2014 // Туберкулёз и болезни лёгких. $2011. \mathbb{N} \ 4. \mathrm{C}. 156-157.$
- 9. **Звонкова, С. Г.** Конституциональные особенности детей с туберкулёзной инфекцией, проживающих в экологически неблагоприятных условиях / **С. Г. Звонкова,** Е. Ю. Зоркальцева // Второй Сибирский конгресс по экологии. Иркутск, 2010. С. 19–22.
- 10. **Звонкова, С. Г.** Особенности восприимчивости к туберкулёзной инфекции у детей с различными типами конституции / **С. Г. Звонкова** // Актуальные вопросы фтизиатрии в Иркутской области: сборник статей, посвящённый 20-летию каф. туберкулёза ИГИУВа. Иркутск, 2010. С. 12–14.
- 11. **Звонкова, С. Г.** Полиморфизм генов DC-SIGN —336A/G, гена MCP1 —2518A/G, гена INF γ +874A/T у детей с туберкулёзной инфекцией в Иркутской области / **С. Г. Звонкова**, О. Б. Огарков, Е. Ю. Зоркальцева // Актуальные проблемы противотуберкулёзной помощи и перспективы её совершенствования: материалы науч.-практ. конф., посв. 75-летию со дня образования Республиканского клинического противотуберкулёзного диспансера им. Г. Д. Дугаровой. Улан-Уде, 2011. С.173—179.

СПИСОК СОКРАЩЕНИЙ

ВТБ	внелегочный туберкулез
BO3	Всемирная организация здравоохранения
ΓΤ	генерализованный туберкулёз
ДНК	дезоксирибонуклеиновая кислота
ТИ	инфильтративный туберкулёз
МБТ	микобактерия туберкулёза
OAK	общий анализ крови
OAM	общий анализ мочи
OT	очаговый туберкулёз
ПТК	первичный туберкулёзный комплекс
ПЦР	полимеразно-цепная реакция
MCP-1	рецептор моноцитарного хемоатрактивного белка 1 типа
ТВГЛУ	туберкулёз внутригрудных лимфатических узлов
ТΠ	туберкулёзный плеврит
XT	химиотерапия

DTF